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1. Introduction

It is known that the graviphoton effects play an important role for studying non-perturba-

tive properties in superstring theory and supersymmetric gauge theory. The low en-

ergy dynamics of D-branes in the superstrings compactified on a Calabi-Yau manifold

with constant graviphoton background is shown to become supersymmetric gauge the-

ories on non(anti)commutative superspace [1 – 3]. It is shown that the effective theory

becomes supersymmetric Yang-Mills theory on N = 1/2 superspace, which was con-

structed by Seiberg [4]. This theory is defined in N = 1 Euclidean superspace with

non-anticommutativity for supercoordinates θα satisfying the Clifford algebra {θα, θβ} =

Cαβ [5, 6]. This theory is also considered as the low energy effective theory on the D3-branes

of type IIB superstring theory compactified on R6/Z2×Z2 with constant graviphoton back-

ground [7].

Non(anti)commutative N = 1/2 superspace can be generalized to extended superspace.

Non(anti)commutative harmonic superspace [8] provides particularly an efficient tool for

investigating the deformed Lagrangian and their symmetries at the off-shell level. N = 2

supersymmetric gauge theory on the non(anti)commutative harmonic superspace has been

studied in [9 – 13], where one can introduce various types of deformations by {θiα, θjβ} =

Cαβij . Here θiα are supercoordinate labeled by SU(2)R R-symmetry index i = 1, 2.
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The purpose of the present paper is to study graviphoton effects in N = 2 super-

symmetric gauge theory, which can be obtained as the low-energy effective theory of the

D3-brane in type IIB superstring theory. We will consider the (fractional) D3-branes

in type IIB superstring theory compactified on the orbifold C2/Z2 [14]. We introduce

constant graviphoton backgrounds along the branes and calculate disk amplitudes which

remain nonzero in the zero slope limit. Here we will use the NSR formalism to represent

the graviphoton vertex operator in the closed string R-R sector. We construct the effec-

tive Lagrangian deformed by the graviphoton background. The constant graviphoton field

strength Fαβij characterizes the deformation structure of N = 2 supersymmetric gauge

theory on the branes.

There arise some non-trivial problems to compare two parameters Fαβij and Cαβij.

One is the choice of the scaling limit (2πα′)nF = C = fixed for some n in the zero slope

limit α′ → 0. Here we take F such that it has mass dimension two. In this work we will fix

n = 3/2 such that C becomes deformation parameters of non(anti)commutative superspace.

Another point is the tensor structure of the graviphoton background. In the case of super-

strings, spinor indices α, β and R-symmetry indices i, j are independent. But in the har-

monic superspace formalism the deformation parameter Cij
αβ obeys symmetry Cij

αβ = Cji
βα.

This suggests that the graviphoton background Fαβij describes more general deformation

of N = 2 theory. We can classify the graviphoton background into four types F [αβ][ij],

F (αβ)[ij], F [αβ](ij), F (αβ)(ij). Here the (square) bracket means (anti)symmetrization.

In this paper, we will study the F (αβ)(ij) type deformation in detail. We will show

that in the graviphoton background of type F (αβ)(ij), the deformed Lagrangian includes

that of N = 2 supersymmetric U(N) gauge theory defined in N = 1/2 superspace [15].

For the singlet type deformation Cij
αβ = Csε

ijεαβ [9], it is pointed that the deformed the-

ory can be obtained from the constant R-R scalar background [8]. This deformation would

correspond to the F [αβ][ij] type deformation. However, for other types of graviphoton back-

ground F [αβ](ij) and F (αβ)[ij], they do not correspond to the deformed theory obtained from

non(anti)commutative harmonic superspace due to the difference of the tensor structure of

indices.

Recently, Billó et. al. [14] studied the low-energy effective action in particular type

constant graviphoton background and pointed its relation to the Ω-background which has

been applied to obtain the exact prepotential formula [16]. They use the deformation of

type F (αβ)[ij] and different scaling (2πα′)
1
2F (αβ)[ij] = fixed.

This paper is organized as follows: In section 2, we review type IIB superstrings on

C2/Z2 using NSR formalism and construct N = 2 supersymmetric U(N) gauge theory

in terms of the fractional D3-branes located at the singular point in the orbifold C2/Z2.

We introduce auxiliary field vertex operators to simplify calculations of disk amplitudes.

In section 3, we calculate the disk amplitudes with insertion of one graviphoton vertex

operator. We focus on the F (αβ)(ij) type background. In the case that only F (αβ)(11)

is non-zero, the deformed Lagrangian is shown to precisely agree with the one that is

constructed in N = 1 non(anti)commutative superspace. We also show that by restricting

to the abelian case, the deformed Lagrangian corresponds to the one which is defined in the

non-singletly deformed harmonic superspace {θiα, θjβ} = Cαβbij with bijbij = 0. In section

– 2 –
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4, we present our conclusions and discuss the possibility of new type of deformed N = 2

gauge theory, that is obtained from the open superstring amplitudes. In appendix A, we

summarize possible disk amplitudes including a graviphoton vertex operator, which remain

nonzero in the zero slope limit. In appendix B, we present some detailed explanations for

the effective rules in computing disk amplitudes including spin operators.

2. Type IIB superstrings on C2/Z2 and D3-branes

In this section we review the construction of the N = 2 supersymmetric gauge theory

with gauge group U(N) by a stack of fractional D3-branes in type IIB superstring theory

compactified on C2/Z2. We will use the NSR formalism.

2.1 Type IIB on C2/Z2

We begin with reviewing type II superstring theory in ten dimensions. Let Xm(z, z̄), ψm(z)

and ψ̃m(z̄) (m = 1, . . . , 10) be free bosons and fermions with worldsheet coordinates (z, z̄).

Here we will take the Euclidean signature and their operator product expansions (OPEs)

are given by Xm(z)Xn(w) ∼ −δmn ln(z − w) and ψm(z)ψn(w) ∼ δmn/(z − w). Fermionic

ghost system (b, c) with conformal weight (2,−1) and bosonic ghost system (β, γ) with

weight (3/2,−1/2) are also introduced. The worldsheet fermions ψm(z) are bosonized in

terms of free bosons φa(z) (a = 1, . . . , 5) by

f±ea(z) ≡ 1√
2
(ψ2a−1 ∓ iψ2a) =: eφa

(z) : cea . (2.1)

Here φa(z) satisfy the OPE φa(z)φb(w) ∼ δab ln(z −w) and the vectors ea are orthonormal

basis in the SO(10) weight lattice space and cea is a cocycle factor [17]. The bosonic ghost

is also bosonized [18]: β = ∂ξe−φ, γ = eφη with OPE φ(z)φ(w) ∼ − ln(z − w). We will

omit normal ordering symbol : : sometimes. In order to describe the R-sector, we need to

introduce spin fields Sλ(z) = eλφ(z)cλ, where φ = φaea and λ = 1
2(±e1 ± e2 ± e3 ± e4 ± e5).

λ belongs to the spinor representation of SO(10). cλ is a cocycle factor. In type IIB theory,

after the GSO projection, we have spinor fields which have odd number of minus signs in

λ, for both left and right movers.

We compactify the theory on C × C2/Z2 with internal coordinates (x5, . . . , x10) and

put the D3-branes with world volume in (x1, x2, x3, x4) directions. We introduce complex

string coordinates and worldsheet fermions by

Z =
1√
2
(X5 + iX6), Ψ =

1√
2
(ψ5 + iψ6),

Z1 =
1√
2
(X7 + iX8), Ψ1 =

1√
2
(ψ7 + iψ8),

Z2 =
1√
2
(X9 + iX10), Ψ2 =

1√
2
(ψ9 + iψ10). (2.2)

The Z2 action g acts on string coordinates as (Z,Z1, Z2) → (Z,−Z1,−Z2). For spinor

states, g acts as +π rotation on the 7− 8 and −π rotation on the 9− 10 plane. Namely for

– 3 –
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a spin state |λ3, λ4, λ5〉, g acts as 1⊗ iσ3 ⊗ (−iσ3), which breaks the SO(6) spin symmetry

into SO(2) × SU(2). Z2 invariant states are made of

∣

∣

∣

∣

ε

2
,±1

2
,±1

2

〉

, ε = ±1.

Ten-dimensional spinor field Sλ can be decomposed into SO(4)× SO(2)× SU(2) under the

orbifold projection:

Sλ → (SαS(−)Si, Sα̇S(+)Si) (2.3)

where Sα and Sα̇ (α, α̇ = 1, 2) are four-dimensional spinors with weights ±1
2(e1 + e2) and

±1
2(e1−e2), respectively. We will follow the conventions of [19]. The upper and lower four-

dimensional spinor indices are related by the anti-symmetric tensor εαβ . S(±) = e±
1
2
φ3 and

Si denote the internal spin fields. Si have weights ±1
2(e4+e5). Similarly to four-dimensional

spinors, internal spin indices i are raised and lowered by εij .

When N D3-branes are located at the orbifold fixed point, the massless states describe

N = 2 supersymmetric U(N) gauge theory. The N = 2 vector multiplet consists of gauge

bosons Aµ, two gauginos Λαi (i = 1, 2) and complex scalars ϕ, which belong to the adjoint

representation of the gauge group.

We denote the vertex operator for a massless field X in the q-picture by V
(q)
X . For

bosonic fields in the (−1)-picture, they are given by

V
(−1)
A = (2πα′)

1
2 Aµ(p)

1√
2
ψµe−φei

√
2πα′p·X ,

V (−1)
ϕ = (2πα′)

1
2 ϕ(p)

1√
2
Ψe−φei

√
2πα′p·X ,

V
(−1)
ϕ̄ = (2πα′)

1
2 ϕ̄(p)

1√
2
Ψ̄e−φei

√
2πα′p·X , (2.4)

where pµ is four-momentum. For calculations of scattering amplitudes, we need vertex

operators in the 0-picture. These are given by

V
(0)
A = 2i(2πα′)

1
2 Aµ(p)

(

∂Xµ + i(2πα′)
1
2 p · ψψµ

)

ei
√

2πα′p·X ,

V (0)
ϕ = 2i(2πα′)

1
2 ϕ(p)

(

∂Z + i(2πα′)
1
2 p · ψΨ

)

ei
√

2πα′p·X ,

V
(0)
ϕ̄ = 2i(2πα′)

1
2 ϕ̄(p)

(

∂Z̄ + i(2πα′)
1
2 p · ψΨ̄

)

ei
√

2πα′p·X . (2.5)

For fermionic fields, they are constructed by using the spin fields:

V
(−1/2)
Λ = (2πα′)

3
4 Λαi(p)SαS(−)Sie

− 1
2
φei

√
2πα′p·X ,

V
(−1/2)

Λ̄
= (2πα′)

3
4 Λ̄α̇i(p)S̄α̇S(+)Sie−

1
2
φei

√
2πα′p·X . (2.6)

The prefactor of the vertex operators ensures that all the polarization has canonical dimen-

sion. Following [7], the Fourier transformation is taken with respect to the dimensionless

momentum k ≡
√

2πα′p so that the momentum polarization Aµ(p) has the same dimension

of Aµ(x).
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The graviphoton vertex operator belongs to the R-R sector and is expressed as

V
(−1/2,−1/2)
F (z, z̄) = (2πα′)Fαβije−

1
2
φSαS(−)Si(z)e−

1
2
φS̃βS̃(−)S̃j(z̄). (2.7)

We have normalized Fαβij such that it has canonical mass dimension +2.

2.2 Disk amplitudes

We now consider a disk amplitude such that open strings end on the D3-branes. The disk

is realized as the upper half-plane whose boundary is real axis. The vertex operators for

massless vector multiplets are inserted on the real axis and the graviphoton operators are

in the upper-half plane. We apply the doubling trick where right-moving fields are located

on the lower-half plane with the boundary condition:

SαS(−)Si(z) = S̃αS̃(−)S̃i(z̄)
∣

∣

∣

z=z̄
. (2.8)

The disk amplitudes can be calculated by replacing S̃αS̃(−)S̃i(z̄) by SαS(−)Si(z̄) in the

correlator. The n + 2nF -point disk amplitude for n vertex operators V
(qi)
Xi

(yi) and nF

graviphoton vertex operators V
(− 1

2
,− 1

2
)

F (zj , z̄j) is given by

〈〈V (q1)
X1

· · ·V (− 1
2
,− 1

2
)

F · · ·〉〉 = CD2

∫

∏n
i=1 dyi

∏nF

j=1 dzjdz̄j

dVCKG
〈V (q1)

X1
(y1) · · ·V

(− 1
2
,− 1

2
)

F (z1, z̄1) · · ·〉.
(2.9)

Here CD2 denotes the disk normalization factor, which is given by [20]

CD2 =
1

2π2(α′)2
1

kg2
YM

. (2.10)

gYM is the gauge coupling constant and k is a normalization constant of U(N) generators

T a, tr(T aT b) = kδab. dVCKG is an SL(2,R)-invariant volume factor to fix three positions

x1, x2 and x3 among yi, zj ,and z̄j’s:

dVCKG =
dx1dx2dx3

(x1 − x2)(x2 − x3)(x3 − x1)
. (2.11)

Note that in the disk amplitudes (2.9) the sum of the φ-charge in the bosonic ghost must

be −2.

We need some correlation functions of ten-dimensional spin operators e−
1
2
φSλ(z),

bosonized fermions f±ei(z) and the Lorentz generators : f±eif±ej(z) :. The Lorentz gen-

erators can be eliminated from the correlation functions by using the Ward identities (see

appendix B). The correlation functions are reduced to the ones of bosonized vertex oper-

ators of the form eλ̃·φ̃(z)cλ̃ = eλ·φeqφ(z)cλ̃. Here λ̃ = (λ, q) and φ̃ = (φa, φ). The cocycle

factor is given by cλ̃ = exp(πiλ̃M [∂φ̃]0), where [∂φ̃]0 denotes the zero mode of ∂φ̃. The

6 × 6 matrix M [17] is given by

M =



















0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

−1 1 −1 0 0 0

1 1 1 1 0 0

−1 −1 −1 −1 1 0



















. (2.12)
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Then the correlation functions are calculated as

〈eλ̃1·φ̃(z1)cλ̃1
· · · eλ̃N ·φ̃(zN )cλ̃2

〉 =
∏

i<j

(zi − zj)
λ̃iλ̃j exp(πiλ̃i · Mλ̃j)δP

i λ̃i,(0,−2). (2.13)

Here λ̃i · λ̃j = λi · λj − qiqj for λ̃i = (λi, qi). When we decompose the spin operators as

in (2.3), we can obtain the “effective” rules for space-time and internal parts [21]. These

rules are summarized in appendix B.

2.3 N = 2 gauge theory and the auxiliary field method

The action of N = 2 supersymmetric Yang-Mills theory is given by

SN=2
SYM =

∫

d4x
1

g2
YM

1

k
tr

(

−1

4
FµνFµν − 1

4
Fµν F̃µν − DµϕDµϕ̄ − 1

2
[ϕ, ϕ̄]2

−iΛiσµDµΛ̄i −
1√
2
Λi [ϕ̄,Λi] −

1√
2
Λ̄i

[

ϕ, Λ̄i
]

)

, (2.14)

where

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ],

Dµϕ = ∂µϕ + i[Aµ, ϕ], (2.15)

and F̃µν is the dual of Fµν . σµ = (iτ1, iτ2, iτ3, 1) and σ̄µ = (−iτ1,−iτ2,−iτ3, 1) are Dirac

matrices. Here τa (a = 1, 2, 3) denote the Pauli matrices. The gauge fields, scalar fields

and gauginos are expanded by the U(N) basis such as Aµ = Aa
µT a. In the action (2.14)

we have eliminated auxiliary fields of the superfields. The action is derived by computing

disk amplitudes with vertex operators attached on the boundary of the disk.

The auxiliary field method [7] (see also [21, 22]) is found to give an effective tool

to simplify calculations because a four-point amplitude can be reduced to the three-point

amplitude which includes an auxiliary field vertex operator. In [7], this method was applied

to obtain non(anti)commutative N = 1/2 super Yang-Mills theory from the D3-brane in

type IIB superstrings compactified on C3/Z2×Z2. In this paper we generalize this method

to the case of the N = 2 gauge theory.

In [7], it was shown that the quartic interactions of gauge fields can be written into

the cubic type interactions by introducing the auxiliary self-dual tensor Hµν , which is also

expressed in terms of ’t Hooft eta symbol such as Hµν = Hcηc
µν . The gauge field part

− 1
4g2

YMk
tr(F 2

µν + Fµν F̃µν) in the Lagrangian is equivalent to

− 1

g2
YM

1

k
tr

(

1

4
(∂µAν − ∂νAµ)2 + i∂µAν [Aµ, Aν ] +

1

2
HcH

c +
1

2
Hcη

c
µν [Aµ, Aν ]

)

. (2.16)

In the N = 2 case, the action (2.14) contains other quartic interactions which include

scalar fields and gauge fields. We therefore introduce new auxiliary fields HAϕµ, HAϕ̄µ and

– 6 –
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Hϕϕ̄. The Lagrangian is shown to be equal to

LN=2
SYM = − 1

g2
Y M

1

k
tr

[

1

4
(∂µAν − ∂νAµ)2 + i∂µAν [A

µ, Aν ] +
1

2
HcH

c +
1

2
Hcη

c
µν [A

µ, Aν ]

+∂µϕ∂µϕ̄+ i∂µϕ[Aµ, ϕ̄]+ i[Aµ, ϕ]∂µϕ̄− HAϕµHµ
Aϕ̄+ iHAϕµ[Aµ, ϕ̄]+ i[Aµ, ϕ]Hµ

Aϕ̄

+H2
ϕϕ̄ + i

√
2Hϕϕ̄[ϕ, ϕ̄]

−iΛiσµDµΛ̄i −
1√
2
Λi [ϕ̄,Λi] −

1√
2
Λ̄i

[

ϕ, Λ̄i
]

]

. (2.17)

The auxiliary fields have relevant vertex operators in superstring theory. In [7], it is

shown that the auxiliary fields Hµν is associated to the vertex operator

V
(0)
H (y) =

1

2
(2πα′)Hµν(p)ψνψµei

√
2πα′p·X(y) (2.18)

in the 0-picture. In the N = 2 case this vertex operator can be generalized to other

auxiliary fields such as

V
(0)
HAϕ

= 2i(2πα′)HAϕµψµΨei
√

2πα′p·X ,

V
(0)
HAϕ̄

= 2i(2πα′)HAϕ̄µψµΨ̄ei
√

2πα′p·X ,

V
(0)
Hϕϕ̄

= −i
√

2(2πα′)Hϕϕ̄ΨΨ̄ei
√

2πα′p·X . (2.19)

We now explain that all the interaction terms in the N = 2 Lagrangian (2.17) can be

derived from the disk amplitudes with vertex operators on the boundary. For example, the

Hµν [Aµ, Aν ] term in (2.17) is derived from the disk amplitude

〈〈V (0)
H (p1)V

(−1)
A (p2)V

(−1)
A (p3)〉〉

=
1

2π2α′2
1

kg2
YM

(2πα′)2
1

2

(

1√
2

)2

tr [Hµν(p1)Aρ(p2)Aσ(p3)]

∫

∏

j dyj

dVCKG

×〈e−φ(y2)e−φ(y3)〉〈ψνψµ(y1)ψ
ρ(y2)ψ

σ(y3)〉
〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

.

(2.20)

Here we have separated the correlator into the four-dimensional, internal and ghost parts.

The ghost part can be evaluated by the Wick formula. The other parts are calculated by

the effective rules in appendix B. The Xµ correlator is given by

〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

= (y1 − y2)
2πα′p1·p2(y1 − y3)

2πα′p1·p3(y2 − y3)
2πα′p2·p3. (2.21)

Since we consider only the massless states, we have pi · pj = 0 for i, j = 1 · · · 3 and the

contribution from the X correlator becomes trivial. Taking all together, the amplitude is

〈〈V (0)
H (p1)V

(−1)
A (p2)V

(−1)
A (p3)〉〉 =

1

kg2
YM

tr [Hµν(p1)A
µ(p2)A

ν(p3)] . (2.22)
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We note that the appropriate α′ scaling appeared. After adding the other inequivalent

color ordered amplitudes to the above one and taking the symmetric factor into account,

we find the interaction term corresponding to this amplitude is

L = − 1

2g2
YM

1

k
tr [Hµν(x)[Aµ(x), Aν(x)]] , (2.23)

which is precisely the desired interaction in (2.17). The other interaction terms can be

calculated in a similar way and the results are

〈〈

V
(0)
A (p1)V

(−1)
A (p2)V

(−1)
A (p3)

〉〉

= − 2

kg2
YM

tr [Aµ(p1)p
µ
2Aρ(p2)Aσ(p3)δ

ρσ

+p1νAµ(p1)Aρ(p2)Aσ(p3)δ
µρδνσ

−p1νAµ(p1)Aρ(p2)Aσ(p3)δ
µσδνρ] , (2.24)

〈〈

V
(0)
Hϕϕ̄

(p1)V
(−1)
ϕ (p2)V

(−1)
ϕ̄ (p3)

〉〉

=
i
√

2

kg2
YM

tr [Hϕϕ̄(p1)ϕ(p2)ϕ̄(p3)] , (2.25)

〈〈

V
(0)
HAϕ

(p1)V
(−1)
A (p2)V

(−1)
ϕ̄ (p3)

〉〉

=
2i

kg2
YM

tr
[

HAϕµ(p1)A
µ(p2)ϕ̄(p3)

]

, (2.26)

〈〈

V (0)
ϕ (p1)V

(−1)
A (p2)V

(−1)
ϕ̄ (p3)

〉〉

= − 2

kg2
YM

tr [p1µϕ(p1)A
µ(p2)ϕ̄(p3)] , (2.27)

〈〈

V
(−1/2)
Λ (p1)V

(−1/2)
Λ (p2)V

(0)
ϕ̄ (p3)

〉〉

= −
√

2

kg2
YM

tr
[

Λαi(p1)Λαi(p2)ϕ̄(p3)
]

, (2.28)

〈〈

V
(−1/2)
Λ (p1)V

(−1)
A (p2)V

(−1/2)

Λ
(p3)

〉〉

=
1

kg2
YM

tr
[

Λαi(p1)(σ
µ) β̇

α Aµ(p2)Λβ̇j(p3)
]

.(2.29)

Adding other color ordered amplitudes and changing the phase of Λ, we find that all the

cubic interactions in (2.17) are reproduced from these disk amplitudes.

3. Disk amplitudes in the constant graviphoton background

In this section, we will calculate the correction to the disk amplitudes due to the insertion

of one graviphoton vertex operator.

3.1 The zero slope limit

We now examine the effect of the graviphoton vertex operator inserted in the disk. We

will take the zero slope (field theory) limit α′ → 0 at the final stage of the amplitudes

calculation. The R-R graviphoton vertex operator in the disk amplitudes is written as

V
(−1/2,−1/2)
F (z, z̄)=(2πα′)Fαβij

[

Sα(z)S(−)(z)Si(z)e−
1
2
φ(z)Sβ(z̄)S(−)(z̄)Sj(z̄)e−

1
2
φ(z̄)

]

,(3.1)

where we identify the left- and right-moving part.

We need to fix the scaling of the constant graviphoton background. In general we can

take the limit such that

(2πα′)nFαβij = Cαβij (3.2)
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is fixed for some n. For n = 3/2, the parameter Cαβij has mass dimension −1, which is the

same dimension as the deformation parameters in the non(anti)commutative field theory.

We firstly explore which type of disk amplitudes remains nonzero in the zero slope

limit. Let nX be the number of vertex operators for a massless field X. Assuming that we

can assign the appropriate picture number for each vertex operators, the amplitudes of the

form 〈〈V nA

A · · · V nϕ̄

ϕ̄ V nF

F 〉〉 scale as (α′)M , where

M = −2 +
1

2
(nA + nϕ + nϕ̄) +

3

4
(nΛ + nΛ̄) + (1 − n)nF . (3.3)

Here −2 comes from the normalization of the disk amplitude. For M ≤ 0, the amplitudes

remains nonzero in the zero-slope limit. Using the φ3 charge conservation we get

−nϕ + nϕ̄ − 1

2
nΛ +

1

2
nΛ̄ − nF = 0. (3.4)

Using (3.3) and (3.4), the condition M ≤ 0 becomes

1

2
nA +

(

n − 1

2

)

nϕ +

(

3

2
− n

)

nϕ̄ +
1

2

(

n +
1

2

)

nΛ +
1

2

(

5

2
− n

)

nΛ̄ ≤ 2. (3.5)

We then can classify which type of amplitudes remain non-zero in the zero-slope limit. This

analysis can be generalized to the amplitudes including auxiliary field vertex operators. Let

nH
Y be the number of vertex operators for auxiliary fields HY . Then the condition (3.5)

becomes

1

2
nA+

(

n−1

2

)

nϕ+

(

3

2
−n

)

nϕ̄+
1+2n

4
nΛ+

5−2n

4
nΛ̄+nH

AA+nH
ϕϕ̄+nnH

Aϕ+(2−n)nH
Aϕ̄ ≤ 2 (3.6)

with the φ3-charge conservation

−nϕ + nϕ̄ − 1

2
nΛ +

1

2
nΛ̄ − nH

Aϕ + nH
Aϕ̄ − nF = 0. (3.7)

We now consider the case n = 3/2. In this case, the condition (3.6) becomes

1

2
nA + nϕ̄ + nΛ +

1

2
nΛ̄ + nH

AA + nH
ϕϕ̄ +

3

2
nH

Aϕ +
1

2
nH

Aϕ̄ ≤ 2. (3.8)

Without auxiliary fields, we find that 17 types amplitudes remain non-zero. For example,

A4ϕ̄nFFnF type amplitudes remain non-vanishing in the zero slope limit for nF ≥ 0. This

infinite series type correction arises also in the case of non(anti)commutative harmonic

superspace [8, 12]. Indeed, this systematic analysis of α′ scaling is only a sufficient condition

for the non-vanishing amplitudes in the field theory limit. In the string theory there is no

guarantee that the amplitude is non-vanishing even though it has an appropriate α′ scaling.

In this work we will consider the lowest order correction to the amplitude by one con-

stant graviphoton vertex operator for simplicity. This is because we have a large number of

amplitudes including multi graviphoton vertex operators and the effective rules to separate

space-time part from the ten-dimensional correlators become very complicated.
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3.2 Disk amplitudes in the zero slope limit with fixed (2πα′)
3
2F

We will examine possible structure of string amplitudes in the scaling limit with fixed

(2πα′)
3
2F . But it is necessary to see the explicit form of the correlator before the zero-

slope limit is taken.

Focusing on the φ3 charge, the graviphoton vertex operator contains two internal spin

fields S(−). To cancel this φ3 charge, one should insert one ϕ̄ or two Λ vertex operators.

Thus the non-zero disk amplitudes that include one graviphoton vertex operators should

be of the form

〈〈· · ·Vϕ̄VF 〉〉, 〈〈· · · VΛVΛVF 〉〉, (3.9)

where remaining part is φ3 neutral. Possible insertions are of the form

VA, VϕVϕ̄, VΛVΛ, VϕVΛVΛ, Vϕ̄VΛVΛ. (3.10)

Thus, the non-zero amplitudes with one graviphoton vertex operator have the structure

of (3.9) with the insertion of the vertex operators appearing in (3.10).

As mentioned in [23], when we have non-zero amplitude with a 0-picture vertex oper-

ator V
(0)
X corresponding to the fields X = (Aµ, ϕ, ϕ̄) (which produces the derivative ∂µX),

the amplitude which is obtained by replacing V
(0)
X by V

(0)
HAX

, is also non-zero. The com-

bined amplitude 〈〈(V (0)
X + V

(0)
HAX

) · · ·〉〉 corresponds to the gauge covariant derivative DµX.

Thus, whenever we have non-zero amplitude in the zero-slope limit which contains 0-ghost

picture vertex operator V
(0)
X , we should also consider the auxiliary field vertex operator

V
(0)
HAX

to obtain gauge covariant result.

We do not need to calculate the interaction [Aµ, Aν ]2 which can be generated after

the integration of the auxiliary field Hµν in the Lagrangian, at the string level. Such

interactions must be carefully extracted from those presented in the previous subsection.

We summarize all the possible vertex insertions that survives in the zero-slope limit in

appendix A. Any other amplitudes containing one graviphoton and N = 2 vector multiplet

vertex operators vanish in the zero-slope limit or are reduced to the amplitudes in appendix

A.

3.3 Graviphoton effect

Before calculating the corrections explicitly, we will examine the tensor structure of Fαβij .

Since the space-time spinor indices α and the R-symmetry indices i are independent, we

can classify the deformations as follows: F [αβ][ij], F (αβ)[ij], F [αβ](ij) and F (αβ)(ij). We call

these as (S,S), (S,A), (A,S), (A,A) type respectively. The general background contains all

of these types simultaneously. It may be better to investigate each type of deformation

separately. In the following, we consider only the (S,S) type of the graviphoton background

Fαβij = F (αβ)(ij). As we will see, this type of background corresponds to the graviphoton

field strength that induces non(anti)commutative N = 1 superspace {θα, θβ} = Cαβ and

non-singletly deformed N = 2 harmonic superspace {θiα, θjβ} = Cαβbij . The vertex opera-

tor for the graviphoton field strength contains two internal spin fields Si, Sj. These internal
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spin fields, when inserted in the disk without any other internal spin fields, generates anti-

symmetric tensor εij through the correlator 〈Si(z)Sj(w)〉 ∼ εij . When this anti-symmetric

tensor is contracted with the graviphoton field strength F (αβ)(ij), it gives vanishing ampli-

tude. To obtain the non-vanishing amplitudes, at least one fermion vertex operator should

be inserted. The cancellation condition of the φ3-charge implies that the smallest number

of fermion insertion is actually two. We examine all the possible amplitudes including two

fermion vertex operators below.

• 〈〈VΛVΛVϕ̄VF 〉〉 + 〈〈VΛVΛVHAϕ̄
VF 〉〉

The first example of the amplitudes is 〈〈VΛVΛVϕ̄VF 〉〉. We should assign the picture number

to each vertex operators adequately and evaluate the correlators. The amplitude is

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
ϕ̄ (p3)V

(−1/2,−1/2)
F 〉〉(S,S)

=
1

2π2α′2
1

kg2
YM

(2πα′)3(2i)tr
[

Λγk(p1)Λδ̇l(p2)ϕ̄(p3)
]

F (αβ)(ij)

×
∫

∏

j dyj

dVCKG
〈e− 1

2
φ(y1)e−

1
2
φ(y2)e−

1
2
φ(z)e−

1
2
φ(z̄)〉〈Sk(y1)S

l(y2)Si(z)Sj(z̄)〉

×i(2πα′)
1
2 p3µ〈Sγ(y1)S

δ̇(y2)ψ
µ(y3)Sα(z)Sβ(z̄)〉

×〈S(−)(y1)S
(+)(y2)Ψ(y3)S

(−)(z)S(−)(z̄)〉
〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

. (3.11)

Here the symbol “(S,S)” means that we extract only non-zero contributions in the correlator

after contraction with the (S,S) type of the graviphoton field strength F (αβ)(ij). Using the

effective rules and the massless condition, we get

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
ϕ̄ (p3)V

(−1)
F 〉〉(S,S)

=− 1

2π2α′2
1

kg2
YM

(2πα′)
7
2 (2i2)

1√
2
(σµ) δ̇

α εγβe−
1
4
πi · I · tr

[

Λβj(p1)Λδ̇j(p2)p3µϕ̄(p3)
]

F (αβ)(ij).

(3.12)

The overall phase which comes from the cocycle factors and spin fields [17] is explicitly

written. The SL(2,R) invariance is used to fix the positions to y1 → ∞, z → i, z̄ → −i [7].

I is the world sheet integral and is evaluated as

I =

∫ ∞

−∞
dy2

∫ y2

−∞
dy3

(2i)2

(y2
2 + 1)(y2

3 + 1)
= (2i)2

π2

2
. (3.13)

After all, the resulting amplitude is

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
ϕ̄ (p3)V

(−1/2,−1/2)
F 〉〉(S,S)

= − 2√
2

1

kg2
YM

tr
[

Λαi(p1)Λα̇j(p2)(σ
µ) α̇

β ip3µϕ̄(p3)
]

C(αβ)(ij), (3.14)
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where we have defined C(αβ)(ij) ≡ −4π2e
1
4
πi(2πα′)

3
2F (αβ)(ij). By adding inequivalent color

ordered contribution, we find that the amplitude is reproduced by the following interaction:

L = − 1√
2

1

kg2
YM

tr
[

C(αβ)(ij)
{

∂µϕ̄(x), (σµ)αα̇Λ
α̇
i(x)

}

Λβj(x)
]

. (3.15)

This result contains derivative of the adjoint scalar which originates from the zero-ghost

picture vertex operator V
(0)
ϕ̄ . As we noticed before, the auxiliary field amplitude

〈〈VΛVΛVHAϕ̄
VF 〉〉

also contributes to the Lagrangian. In a similar way, the auxiliary field contribution to the

amplitude is evaluated as

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
HAϕ̄

(p3)V
(−1/2,−1/2)
F 〉〉(S,S)

=
2√
2

1

kg2
YM

tr
[

Λαi(p1)Λα̇j(p2)(σ
µ) α̇

β HAϕ̄µ(p3)
]

C(αβ)(ij). (3.16)

After adding other inequivalent color order and multiplying the symmetric factor, we find

the sum of the above two interactions becomes

L = − 1√
2

1

kg2
YM

tr
[

C(αβ)(ij)
{

∂µϕ̄(x) + HAϕ̄µ(x), (σµ)αα̇Λ
α̇
i(x)

}

Λβj(x)
]

. (3.17)

• 〈〈VAVΛVΛVF 〉〉 + 〈〈VHVΛVΛVF 〉〉

The next possible amplitude that can survive is 〈〈VAVΛVΛVF 〉〉, which is given by

〈〈V (0)
A (p1)V

(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉(S,S)

=
1

2π2α′2
1

kg2
YM

(2i)(2πα′)3tr
[

Aµ(p1)Λα̇k(p2)Λβ̇l(p3)
]

F (αβ)(ij)

∫

∏

j dyj

dVCKG

×〈e− 1
2
φ(y2)e−

1
2
φ(y3)e−

1
2
φ(z)e−

1
2
φ(z̄)〉〈Sk(y2)S

l(y3)Si(z)Sj(z̄)〉
×〈S(+)(y2)S

(+)(y3)S
(−)(z)S(−)(z̄)〉

×i(2πα′)
1
2 p1ν〈ψνψµ(y1)S

α̇(y1)S
β̇(y2)Sα(z)Sβ(z̄)〉

〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

=
1

2π2α′2
1

kg2
YM

(2i2)(4π2α′2) · I · e− 1
4
πitr

[

(σµν)αβp1µAν(p1)Λα̇i(p2)Λβ̇i(p3)
]

×(2πα′)
3
2F (αβ)(ij). (3.18)

Here we have introduced the Lorentz generators σµν = 1
4 (σµσ̄ν − σν σ̄µ). The world sheet

integral I is given in (3.13). This amplitude is evaluated as

〈〈V (0)
A (p1)V

(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉(S,S)

=
8π2i

kg2
YM

tr
[

(σµν)αβp1µAν(p1)Λα̇i(p2)Λ
α̇
j(p3)

]

(2πα′)
3
2 e−

1
4
πiF (αβ)(ij). (3.19)
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The amplitude 〈〈VHVΛVΛVF 〉〉 also contributes, whose calculation is essentially the same

as (3.18). The result is

〈〈V (0)
H (p1)V

(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉(S,S)

=
1

2

1

kg2
YM

tr
[

(σµν)αβHµν(p1)Λα̇i(p1)Λ
α̇
j (p3)

]

C(αβ)(ij). (3.20)

By adding another color ordered amplitude and changing the phase of Λ, we obtain the

graviphoton induced interactions

L = = − i

2

1

kg2
YM

tr

[{

(∂µAν(x) − ∂νAµ(x)) − i

2
Hµν(x)

}

Λα̇i(x)Λ
α̇
j(x)

]

Cµν(ij).(3.21)

Here we have defined Cµν(ij) ≡ (σµν)αβC(αβ)(ij) and included a symmetric factor of 1
2 .

• 〈〈Vϕ̄VΛVΛVϕ̄VF 〉〉

The amplitude of the form 〈〈Vϕ̄VΛVΛVϕ̄VF 〉〉 is also the candidate for the non-vanishing

amplitude:

〈〈V (0)
ϕ̄ (p1)V

(−1/2)
Λ (p2)V

(−1/2)
Λ (p3)V

(0)
ϕ̄ (p4)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2πα′)
7
2 (2i)2tr

[

ϕ̄(p1)Λ
kγ(p2)Λ

lδ(p3)ϕ̄(p4)
]

Fαβij

×
∫

∏

j dyj

dVCKG
〈e− 1

2
φ(y2)e−

1
2
φ(y3)e−

1
2
φ(z)e−

1
2
φ(z̄)〉〈Sk(y2)Sl(y3)Si(z)Sj(z̄)〉

×
〈(

∂Z(y1) + i(2πα′)
1
2 p1 · ψΨ(y1)

)

S(−)(y2)S
(−)(y3)Sγ(y2)Sδ(y3)

×
(

∂Z(y4) + i(2πα′)
1
2 p4 · ψΨ(y4)

)

S(−)(z)S(−)(z̄)Sα(z)Sβ(z̄)
〉

〈

4
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

.

(3.22)

The ∂Z∂Z part and the cross terms does not contribute to the amplitude because the

φ3-charge can not be canceled. The non-zero contribution comes from the p1 · ψΨ p2 · ψΨ

part only. The correlator is reduced to the form

i2(2πα′)p1µp2ν〈ψµ(y1)Sγ(y2)Sδ(y3)ψ
ν(y4)Sα(z)Sβ(z̄)〉

×〈Ψ(y1)S
(−)(y2)S

(−)(y3)Ψ(y4)S
(−)(z)S(−)(z̄)〉

×〈e− 1
2
φ(y2)e−

1
2
φ(y3)e−

1
2
φ(z)e−

1
2
φ(z̄)〉. (3.23)

However this is a higher α′ order contribution so that it does not survive in the zero-slope

limit in our scaling.
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• 〈〈VΛVΛVF 〉〉

The amplitude is

〈〈V (−1/2)

Λ
(p1)V

(−1/2)

Λ
(p2)V

(−1/2,−1/2)
F 〉〉(S,S)

=
1

2π2α′2
1

kg2
YM

(2πα′)
5
2 tr

[

Λα̇k(p1)Λβ̇l(p2)
]

Fαβij

×
∫

∏

j dyj

dVCKG
〈e− 1

2
φ(y1)e−

1
2
φ(y2)e−

1
2 φ(z)e−

1
2
φ(z̄)〉〈Sα̇(y1)S

β̇(y2)Sα(z)Sβ(z̄)〉

×〈S(+)(y1)S
(+)(y2)S

(−)(z)S(−)(z̄)〉〈Sk(y1)S
l(y2)Si(z)Sj(z̄)〉

〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

.

(3.24)

The effective rule for the correlator of four space-time spin fields is

〈Sα̇(y1)S
β̇(y2)Sα(z)Sβ(z̄)〉 = εα̇β̇εαβ(y1 − y2)

− 1
2 (z − z̄)−

1
2 , (3.25)

which gives vanishing contribution when contracted with the (S,S) type of graviphoton

field strength.

• 〈〈VHϕϕ̄VΛVΛVF 〉〉

The amplitude is

〈〈V (0)
Hϕϕ̄

(p1)V
(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2πα′)
7
2 (−i

√
2)tr

[

Hϕϕ̄(p1)Λγ̇k(p2)Λδ̇l(p3)
]

Fαβij

×
∫

∏

j dyj

dVCKG
〈e− 1

2
φ(y2)e−

1
2
φ(y3)e−

1
2
φ(z)e−

1
2
φ(z̄)〉

×〈Sk(y2)S
l(y3)Si(z)Sj(z̄)〉〈Sγ̇(y2)S

δ̇(z̄)〉〈Sα(z)Sβ(z̄)〉

×〈ΨΨ(y1) S(+)(y2)S
(+)(y3)S

(−)(z)S(−)(z̄)〉
〈

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

. (3.26)

In this case, there is a factor εαβ coming from the spin field correlator 〈Sα(z)Sβ(z̄)〉. When

it is contracted with the (S,S) type of the graviphoton, this part gives vanishing result.

Altogether, the interaction term L(S,S) in the Lagrangian induced by the (S,S) type of

the graviphoton field strength at the lowest order is

L(S,S) = − 1√
2

1

kg2
YM

tr
[

C(αβ)(ij)
{

∂µϕ̄(x) + HAϕ̄µ(x), (σµ)αα̇Λ
α̇
i(x)

}

Λβj(x)
]

− i

2

1

kg2
YM

tr

[{

(∂µAν(x) − ∂νAµ(x)) − i

2
Hµν(x)

}

Λα̇i(x)Λ
α̇
j(x)

]

Cµν(ij).

(3.27)
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After integrating out the auxiliary fields, we find effective interaction terms are written

as

L(S,S) = − 1√
2

1

g2
YM

1

k
tr

[

C(αβ)(ij){Dµϕ̄, (σµ)αα̇Λ
α̇
i}Λβj

]

− i

2

1

g2
YM

1

k
tr

[

FµνΛiΛjC
µν(ij)

]

+
1

8

1

g2
YM

1

k
tr

[

ΛiΛjC
µν(ij)ΛkΛlC

(kl)
µν

]

. (3.28)

If we consider the case that only the part Cαβ ≡ Cαβ11 is non-zero, we find the deformed

Lagrangian

Lc = LN=2
SYM + L(S,S) (3.29)

precisely coincides with the one constructed in the N = 1/2 superspace with the Moyal

product [15]1

L =
1

g2
YM

1

k
tr

[

−1

4
FµνFµν − 1

4
Fµν F̃µν − iλ̄α̇(σ̄µ)α̇αDµλα − iψ̄α̇(σ̄µ)α̇αDµψα

−(DµĀ)(DµA) − i
√

2[Ā, ψµ]λα − i
√

2[A, ψ̄α̇]λ̄α̇ − 1

2
[A, Ā]2

]

+
1

g2
YM

1

k
tr

[

− i

2
CµνFµν λ̄α̇λ̄α̇ +

1

8
|C|2(λ̄α̇λ̄α̇)2 −

√
2

2
Cαβ{DµĀ, (σµ)αα̇λ̄α̇}ψβ

]

.

(3.30)

Here, we have defined ϕ̄ = Ā, Λ1 ≡ λ,Λ1 ≡ λ̄,Λ1 ≡ ψ,Λ
1

= ψ̄. Actually, this (S,S) type

of the R-R background F (αβ)(11) corresponds to the graviphoton vertex operator which

induces the non-anticommutativity in the N = 1 superspace [7],

V
(−1/2,−1/2)
F (z, z̄)=(2πα′)Fαβ(11)

[

Sα(z)S(−−−)e−
1
2
φ(z)Sβ(z̄)S(−−−)(z̄)e−

1
2
φ(z̄)

]

. (3.31)

It is worth to mention that deformation to the super Yang-Mills action in the back-

ground (3.31) terminates at the quadratic order in F though it is not the case for the

general graviphoton background. The F2 term appeared in the (3.29) is the only possible

one.

We thus conclude that the N = 2 super Yang-Mills theory defined on the N = 1/2

superspace {θα, θβ} = Cαβ is the effective theory of the D3-branes in the background

graviphoton field of the type (3.31). The effective Lagrangian preserves only a part of the

original supersymmetry but the canonical gauge invariance is intact [15]. Note that the

background corresponding to the Lagrangian (3.29) is self-dual and does not receive the

gravitational back-reaction.

The general type of the graviphoton background F (αβ)(ij) seems to correspond to the

non-singlet deformation {θiα, θjβ} = Cαβbij of N = 2 harmonic superspace. In fact, for bij

1Here, compared with the Lagrangian in [15], we have rescaled Aµ →
1

gYM

Aµ, (A, Ā) →
1

gYM

(A, Ā),

Cαβ
→

1
gYM

Cαβ .
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satisfying bijbij = 0, the exact deformed N = 2 abelian gauge theory was obtained in [11],

which is of the form

L = −∂µϕ∂µϕ̄ − 1

4
Fµν(Fµν + F̃µν) − iΛαi(σµ)αα̇∂µΛ

α̇
i

+4
√

2iCαβbij(σµ)αα̇∂µϕ̄ · Λα̇
iΛβj − 2CµνbijFµνΛα̇iΛ

α̇
j − 2CµνbijCµνbkl(ΛiΛj)(ΛkΛl).

(3.32)

If we identify Cαβbij ≡ i
4C(αβ)(ij), the non-singletly deformed Lagrangian (3.32) exactly

agrees with the (S,S) type deformed theory (3.29). For the non-singlet case with bijbij 6= 0,

we can show that the deformed Lagrangian (3.29) agrees with that of [11] at the first order

in bc.

4. Conclusions and discussion

In this paper, we have written down the low-energy effective Lagrangian of N = 2 super-

symmetric gauge theory from the open superstring amplitudes in the graviphoton back-

ground. The structure of the deformed action depends on the scaling condition of the

background in the zero-slope limit. We have chosen that the deformation parameter has

the same dimension of the non-anticommutativity parameter of the superspace, i.e. the

graviphoton polarization scales as (2πα′)
3
2F = fixed in the zero-slope limit.

Compared with the deformation of N = 1 super Yang-Mills theory [7], where only

finite number of graviphoton vertex operator insertion in the disk amplitude is allowed,

arbitrary number of graviphoton vertex operators can be inserted in the disk amplitudes

in the case of the deformation of N = 2 theory.

We have discussed that the graviphoton field strength Fαβij can be classified into four

types: (S,S), (S,A), (A,S) and (A,A) types. In the present work, we have investigated the

(S,S) type deformation in detail. For (S, S) type deformation, we have shown that the

N = 2 super Yang-Mills theory defined on N = 1 non(anti)commutative superspace is

precisely equivalent to the effective theory of the D3-branes in the presence of the self-dual

F (αβ)(11) graviphoton background. We also find that the deformed N = 2 abelian gauge

theory defined on non(anti)commutative harmonic superspace {θiα, θjβ} = Cαβbij with

bijbij = 0 [11] is reproduced by the disk amplitudes.

In this paper, we have considered only disk amplitudes with one insertion of the

graviphoton vertex operator. In the case of the F (αβ)(11) background, it is shown that

the number of graviphoton vertex operators are less than or equal to two in the zero slope

limit. The non-zero amplitude at the quadratic order is 〈〈V 4
Λ
V 2
F 〉〉, which is generated by

integrating out the auxiliary field in the Lagrangian deformed at the first order in C. For

general (S, S) type background F (αβ)(ij), there exists infinitely many higher order contri-

butions to the non-vanishing amplitudes. In principle, we can calculate these graviphoton

contributions in the NSR formalism [23]. However, it would be less tractable because of the

complicated structure of the correlators for many spin fields. It would be better to calculate

the effects of graviphoton background by using the hybrid formalism of superstring [26]

– 16 –
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rather than the NSR formalism since one can keep manifest N = 1 supersymmetry on the

branes.

We have seen that the deformations with parameters F [αβ](ij) and F (αβ)[ij] do not

correspond to the deformation of superspace. These types of background would give new

types of deformation of N = 2 theory. In [14], the (S,A) type of the graviphoton F (αβ)[ij]

has been discussed. They considered the scaling (2πα′)
1
2F = C̃ = fix, which is different

from ours. In this scaling, the non-zero contribution comes from only two amplitudes

〈〈VAVϕ̄VF 〉〉, 〈〈VHVϕ̄VF 〉〉. (4.1)

After integrating out the auxiliary fields, the effective Lagrangian Lc is shown to be

Lc = LN=2
SYM + L′, (4.2)

where the induced interaction L′ is simply given by

L′ =
1

kg2
YM

tr
[

Fµν ϕ̄C̃µν + (ϕ̄C̃µν)2
]

. (4.3)

We can also study the (A,A) type deformation, which is expected to correspond to the

singlet deformation of N = 2 harmonic superspace [10]. But it is easily found that this

theory includes divergence such as 1
(2πα′)2

trϕ̄C in the zero-slope limit. Therefore it is

necessary to consider renormalization or back reactions in this type of deformation. We

will examine deformed N = 2 gauge theories corresponding to these types of graviphoton

backgrounds in a forthcoming paper. We can also extend the present construction to

deformed N = 4 supersymmetric gauge theory, where the deformed Lagrangian in the

N = 1/2 superspace is known [25]. String theory calculation would provide more general

type deformation of N = 4 theory. This subject will be also discussed in a separate paper.
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A. Classification of possible disk amplitudes with one graviphoton inser-

tion

All possible disk amplitudes including one graviphoton vertex operator, which remain non-

zero in the zero-slope limit, are summarized as follows:

1. 〈〈V (−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

2. 〈〈V (0)
A V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

H V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉
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3. 〈〈V (0)
A V

(0)
A V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

A V
(0)
H V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉,

〈〈V (0)
H V

(0)
A V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉 , 〈〈V (0)

H V
(0)
H V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

4. 〈〈V (0)
ϕ V

(0)
ϕ̄ V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

HAϕ
V

(0)
ϕ̄ V

(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉,

〈〈V (0)
ϕ V

(0)
HAϕ̄

V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

HAϕ
V

(0)
HAϕ̄

V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

5. 〈〈V (0)
Hϕϕ̄

V
(0)
Hϕϕ̄

V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

6. 〈〈V (0)
A V

(0)
Hϕϕ̄

V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

H V
(0)
Hϕϕ̄

V
(−1)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

7. 〈〈V (−1/2)
Λ V

(−1/2)

Λ
V

(0)
ϕ̄ V

(−1/2,−1/2)
F 〉〉, 〈〈V (−1/2)

Λ V
(−1/2)

Λ
V

(0)
HAϕ̄

V
(−1/2,−1/2)
F 〉〉

8. 〈〈V (0)
ϕ̄ V

(−1/2)
Λ V

(−1/2)
Λ V

(0)
ϕ̄ V

(−1/2,−1/2)
F 〉〉

9. 〈〈V (−1/2)

Λ̄
V

(−1/2)

Λ̄
V

(−1/2,−1/2)
F 〉〉

10. 〈〈V (0)
A V

(−1/2)

Λ
V

(−1/2)

Λ
V

(−1/2,−1/2)
F 〉〉, 〈〈V (0)

H V
(−1/2)

Λ
V

(−1/2)

Λ
V

(−1/2,−1/2)
F 〉〉

11. 〈〈V (0)
Hϕϕ̄

V
(−1/2)

Λ
V

(−1/2)

Λ
V

(−1/2,−1/2)
F 〉〉.

B. Effective rules

The correlators for ten-dimensional spin fields can be decomposed into four-dimensional

and internal parts [7]. The effective rules which are used in this work, are derived from

general formulas in [17]. For four-dimensional spin fields, the rules are summarized as

〈Sα(z)Sβ(z̄)〉 = εαβ(z − z̄)−
1
2 , (B.1)

〈Sα̇(y1)S
β̇(y2)〉 = εα̇β̇(y1 − y2)

− 1
2 , (B.2)

〈Sα̇(y1)S
β̇(y2)Sα(z)Sβ(z̄)〉 = εα̇β̇εαβ(y1 − y2)

− 1
2 (z − z̄)−

1
2 . (B.3)

If there is a world sheet fermion in a correlator, it should be carefully computed by evalu-

ating the cocycle factor. For example, we find

〈Sα̇(y1)ψ
µ(y2)Sα(y3)〉 = − 1√

2
(σ̄µ)α̇βεβα(y1 − y2)

− 1
2 (y2 − y3)

− 1
2 , (B.4)

and

〈Sγ(y1)S
δ̇(y2)ψ

µ(y3)Sα(z)Sβ(z̄)〉

=
1√
2
(y1 − z)−

1
2 (y1 − z̄)−

1
2 (y2 − y3)

− 1
2 (y1 − y3)

1
2 (y3 − z)

1
2 (y3 − z̄)

1
2 (z − z̄)−

1
2

×
[

(σµ) δ̇
γ εαβ(y1 − y3)

−1 + (σµ) δ̇
α εγβ(y3 − z)−1 − (σµ) δ̇

β εγβ(y3 − z̄)−1
]

. (B.5)
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The effective rules for the correlators for internal spin fields are given by

〈Si(z)Sj(z̄)〉 = εij(z − z̄)−
1
2 , (B.6)

〈Si(y1)S
j(y2)S

k(z)Sl(z̄)〉 = [(y1 − y2)(y1 − z)(y1 − z̄)(y2 − z)(y2 − z̄)(z − z̄)]−
1
2

×
[

εilεjk(y1 − z)(y2 − z̄) − εikεjl(y2 − z)(y1 − z̄)
]

= [(y1 − y2)(y1 − z)(y1 − z̄)(y2 − z)(y2 − z̄)(z − z̄)]−
1
2

×
[

−εijεkl(y1 − z̄)(y2 − z) + εilεjk(y1 − y2)(z − z̄)
]

.

(B.7)

If there are Lorentz generators in a correlator, we reduce it to the one which does not

contain any Lorentz generator by the formula in [17]:

〈

O(p)(zp) . . . O(j+1)(zj+1) : ψMψN (z) : O(j)(zj) · · ·O(1)(z1)
〉

=
∑

l

{

(MMN )l l′(z − zl)
−1 + (M ′MN

)l l′(z − zl)
−2

}

×
〈

O(p)(zp) . . . O(j+1)(zj+1)O
(l′)(zl) · · ·O(1)(z1)

〉

. (B.8)

Here, M,N are ten-dimensional space-time indices and the matrices (MMN )
l
l′ and(M ′MN )ll′

are specified by the OPE:

: ψMψN (z) : O(l)(w) ∼
[

(z − w)−2(M ′MN
)l l′ + (z − w)−1(MMN )l l′

]

O(l′)(w). (B.9)

The space-time Lorentz generator : ψµψν : correlates only with the four-dimensional part.

We find

〈Sα̇(z1)ψ
µψν(z2)S

β̇(z3)〉 = −(σ̄µν)α̇β̇(z1 − z3)
1
2 (z1 − z2)

−1(z2 − z3)
−1. (B.10)

In a similar way, for one Lorentz generator and four spin fields, we find

〈ψµψν(y1)S
α̇(y2)S

β̇(y3)Sα(z)Sβ(z̄)〉

= (y2 − y3)
− 1

2 (z − z̄)−
1
2

[

(σ̄µν)α̇β̇εαβ
(y2 − y3)

(y1 − y2)(y1 − y3)
+(σµν)αβεα̇β̇ (z − z̄)

(y1 − z)(y1 − z̄)

]

.

(B.11)

In the case of the internal ”Lorentz generator” : ΨΨ :, the same formula can be used. The

result is

〈: ΨΨ(y1) : Ψ(y2)Ψ(y3)〉 =
1

(y1 − y2)(y1 − y3)
. (B.12)

For Xµ fields, the general formula [17] is useful:

〈

∏

{l}
ε(l) ·∂X(zl)

∏

j

ei
√

2πα′p(j)·X(zj)

〉

=
∏

{l}

[

∂

∂zl

∣

∣

∣

∣√
2πα′p(l)→ε(l)

]

∏

i>j

(zi−zj)
2πα′p(i)·p(j)

.(B.13)
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By using this formula, we find

〈

Aµ(p1)∂Xµ(y1)
n

∏

j=1

ei
√

2πα′pj ·X(yj)

〉

=
∏

i<j

(yi − yj)
2πα′pi·pj × i(2πα′)

1
2

n
∑

j=2

[

Aµ(p1)p
µ
j

y1 − yj

]

,

(B.14)

and

〈

Aµ(p1)∂Xµ(y1)e
i
√

2πα′p1·X(y1)Aν(p2)∂Xν(y2)e
i
√

2πα′p2·X(y2)ei
√

2πα′p3·X(y3)
〉

= (y1 − y2)
2πα′p1·p2(y1 − y3)

2πα′p1·p3(y2 − y3)
2πα′p2·p3

×
[

Aµ(p1)A
µ(p2)

(y1 − y2)2
+

(2πα′)Aµ(p1)p
µ
2Aν(p2)p

ν
1

(y1 − y2)2
+

(2πα′)Aµ(p1)p
µ
3Aν(p2)p

ν
1

(y1 − y2)(y1 − y3)

−(2πα′)Aµ(p1)p
µ
2Aν(p2)p

ν
3

(y1 − y2)(y2 − y3)
− (2πα′)Aµ(p1)p

µ
3Aν(p2)p

ν
3

(y1 − y3)(y2 − y3)

]

. (B.15)
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